Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this video article, accompanying the paper “An approach to learning the hierarchical organization of the frontal lobe”, we discuss a data driven approach to learning brain connectivity. Hierarchical models of brain connectivity are useful to understand how the brain can process sensory information, make decisions, and perform other high-level tasks. Despite extensive research, understanding the structure of the prefrontal cortex (PFC) remains a crucial challenge. In this work, we propose an approach to studying brain signals and uncovering characteristics of the underlying neural circuity, based on the mathematics of Gaussian processes and causal strengths. For discovering causations, we propose a metric referred to as double-averaged differential causal effect, which is a variant of the recently proposed differential causal effect, and it can be used as a principled measure of the causal strength between time series. We applied this methodology to study local field potential data from the frontal lobe, where the interest was in finding the causal relationship between the medial and lateral PFC areas of the brain. Our results suggest that the medial PFC causally influences the lateral PFC.more » « less
-
In neuroscience, hierarchical models of brain connectivity, particularly in the prefrontal cortex (PFC), are used to understand how the brain can process sensory information, make decisions and perform other high level tasks. Despite extensive research, understanding the structure of the PFC remains a crucial challenge. To this end, we propose a data-driven approach to studying brain signals based on Gaussian processes and causal strengths. For discovering causations, we propose a metric referred to as double-averaged differential causal effect. The differential causal effect has been proposed recently, and it can be used to quantify causal strengths in a principled way. We studied real multivariate time series data that represent local field potentials from the frontal lobe. The interest was in finding the causal relationship between the medial and lateral PFC areas of the brain. Our results suggest that the medial PFC causally influences the lateral PFC.more » « less
-
Abstract The western United States region, an economic and agricultural powerhouse, is highly dependent on winter snowpack from the mountain west. Coupled with increasing water and renewable electricity demands, the predictability and viability of snowpack resources in a changing climate are becoming increasingly important. In Idaho, specifically, up to 75% of the state’s electricity production comes from hydropower, which is dependent on the timing and volume of spring snowmelt. While we know that 1 April snowpack is declining from SNOTEL observations and is expected to continue to decline as indicated by GCM predictions, our ability to understand the variability of snowfall accumulation and distribution at the regional level is less robust. In this paper, we analyze snowfall events using 0.9-km-resolution WRF simulations to understand the variability of snowfall accumulation and distribution in the mountains of Idaho between 1 October 2016 and 31 April 2017. Various characteristics of snowfall events throughout the season are evaluated, including the spatial coverage, event durations, and snowfall rates, along with the relationship between cloud microphysical variables—particularly liquid and ice water content—on snowfall amounts. Our findings suggest that efficient snowfall conditions—for example, higher levels of elevated supercooled liquid water—can exist throughout the winter season but are more impactful when surface temperatures are near or below freezing. Inefficient snowfall events are common, exceeding 50% of the total snowfall events for the year, with some of those occurring in peak winter. For such events, glaciogenic cloud seeding could make a significant impact on snowpack development and viability in the region. Significance StatementThe purpose and significance of this study is to better understand the variability of snowfall event accumulation and distribution in the Payette Mountains region of Idaho as it relates to the local topography, the drivers of snowfall events, the cloud microphysical properties, and what constitutes an efficient or inefficient snowfall event (i.e., its ability to convert atmospheric liquid water into snowfall). As part of this process, we identify how many snowfall events in a season are inefficient to determine the number of snowfall events in a season that are candidates for enhancement by glaciogenic cloud seeding.more » « less
An official website of the United States government

Full Text Available